Hosoya polynomials under gated amalgamations

نویسندگان

  • Shoujun Xu
  • Heping Zhang
چکیده

An induced subgraph H of a graph G is gated if for every vertex x outside H there exists a vertex x ′ inside H such that each vertex y of H is connected with x by a shortest path passing through x . The gated amalgam of graphs G1 and G2 is obtained from G1 and G2 by identifying their isomorphic gated subgraphs H1 and H2. Two theorems on Hosoya polynomials of gated amalgams are provided. As their applications, explicit expressions for Hosoya polynomials of hexagonal chains are obtained. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

Alternating Sums in the Hosoya Polynomial Triangle

The Hosoya polynomial triangle is a triangular arrangement of polynomials where each entry is a product of two polynomials. The geometry of this triangle is a good 1 tool to study the algebraic properties of polynomial products. In particular, we find closed formulas for the alternating sum of products of polynomials such as Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials...

متن کامل

Computing Hosoya Polynomials of Graphs from Primary Subgraphs

The Hosoya polynomial of a graph encompasses many of its metric properties, for instance the Wiener index (alias average distance) and the hyperWiener index. An expression is obtained that reduces the computation of the Hosoya polynomials of a graph with cut vertices to the Hosoya polynomial of the so-called primary subgraphs. The main theorem is applied to specific constructions including bouq...

متن کامل

Wiener Index under Gated Amalgamations

Abstract. A subgraph H of a graph G is gated if for every x ∈ V (G) there exists a vertex u in H such that dG(x, v) = dG(x, u) + dG(u, v) for any v ∈ V (H). The gated amalgam of graphs G1 and G2 is obtained from G1 and G2 by identifying their isomorphic gated subgraphs H1 and H2. Two theorems on the Wiener index of gated amalgams are proved. Several known results on the Wiener index of (chemica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008